A ROTATION DETECTION DEVICE AND A VEHICLE PEDAL COMPRISING SUCH A DEVICE

DREHDETEKTOR UND FAHRZEUGPEDAL MIT SOLCH EINER VORRICHTUNG

DISPOSITIF DE DÉTECTION DE ROTATION ET PÉDALE DE VÉHICULE DOTÉE DE CE DISPOSITIF

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Priority: 02.12.2012 SE 1230139
25.06.2013 SE 1350763

Date of publication of application:
07.10.2015 Bulletin 2015/41

Proprietor: CJ Automotive AB
514 63 Dalstorp (SE)

Inventor: WESCHKE, Carl Johan Walter
51630 Dalsjöfors (SE)

Representative: Bergenstråhle Group AB
P.O. Box 17704
118 93 Stockholm (SE)

References cited:
DE-A1- 19 701 069
DE-A1-102012 000 478
GB-A- 2 352 522
US-B2-7 816 913

EP-A2- 1 055 912
WO-A2-2006/102182
DE-A1-102006 032 576
GB-A-2 352 522

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)
Description

Technical field

[0001] The present invention relates to a rotation detection device according to the preamble of claim 1, for the detection of rotation of a vehicle pedal, and to a vehicle pedal comprising such a device.

Background

[0003] It is previously known to measure a position of a vehicle pedal by detection of a rotation around a vehicle pedal shaft. The rotation can be detected by moving a magnetic element over a magnetic field sensing component/sensor, such as a Hall element.

[0004] Previously known commercial solutions have placed the centre of the magnet field sensing component in the centre of rotation of the shaft in order to reduce the wear of the parts and to increase the accuracy. Such a placement is however space requiring in an axial direction, which is a disadvantage since there is often a lack of space around the pedal gear in a vehicle.

[0005] However, there also exist prior art that solve this problem and place the sensor outside of the axis of rotation of the pedal.

[0006] Such a prior art solution is for example described in EP1801543A2, which discloses a pedal with a sensor device for detection of an angle of rotation around a shaft. The sensor device comprises a magnetic element, which is mounted at a rotatable arm which is mounted around the axis of rotation of the pedal and a stator with a magnetic field sensing sensor. The sensor generates a signal originating from magnetic interaction between the movable magnetic element and the sensor which is statically mounted.

[0007] A further solution is disclosed in US7816913B2. This document describes a pedal with a sensor device for detection of an angle of rotation of the pedal. The sensor device comprises a movable part comprising magnets, said part being mounted at the pedal, and a stationary part which comprises a magnetic field sensing component. The sensor device is arranged radially outside of the pedal shaft and generates a signal originating from magnetic interaction between the static and the movable part.

[0008] Previously known systems use strong and expensive magnets and are difficult to control in axial direction. In order to be able to maintain the accuracy of readings also after a time of use and wear, the distance between sensor and magnet has to be controlled.

[0009] The construction described in the present application offers a solution to the above discussed problems.

[0010] In connection with prior art solutions also the calibration of the detection device has been problematic.

Summary of the Invention

The present construction solves also these problems.

[0011] The object of the present invention is to provide a rotation detection device for a vehicle pedal, which is space-saving, has a high accuracy, few and simple components, and which is easy to assemble and to calibrate, both at assembly and after-check.

[0012] Accordingly, the invention relates to a rotation detection device according to claim 1.

[0013] With the above construction the motion of the magnet is controlled so that it cannot move in a radial direction in relation to the magnetic field sensing component. This results in a more reliable measurement result and a better accuracy. The magnetic field sensing component can for example be of a Hall or Reed type, which detects the magnetic field depending on where the magnetic element is in relation to the magnetic field sensing component. The physical design of the rotation detection device solves the problems with not enough space, most often are prevalent when embedding sensors for pedals in cars. It is no longer necessary to physically have the centre of the rotation detection device over the center of the axis of rotation but instead the device can easily be mounted in one of the sides/brackets of the pedal gear, which then also can act as a shield for the rotation detection device.

[0014] In the invention the first part comprises a base part and at least one arm protruding from the base part and arranged in such a way that said at least one arm at least partly surrounds the second part.

[0015] When at least one arm of the first part surrounds the second part a guide of the two parts in relation to each other is created in a radial direction. If only one arm is used it might e.g. be placed at the part of the first part which faces away from the axis of rotation of the pedal. It is also possible to use two arms; one on each side of the second part, which creates an enclosure of the second part in both the radial axes extending from the axis of rotation.

[0016] In one embodiment at least one protrusion is arranged at the arms of the first part, which extends in a substantially perpendicular direction from the arms towards the second part and which is intended to cooperate with a first guide groove arranged in the second part.

[0017] Thus, the second part slides in a groove in the first part, which is linked to the stationary chassis. Thereby, the motion of the first part is guided so that it is kept at a constant distance also in an axial direction in relation to the second part. Due to the fact that the magnetic element sits on a part separate from the pedal and that it is guided in the axial direction, the magnet will be able to have the same distance to the magnetic field sensing component in the axial direction even if there is a small play in the pedal in the axial direction. This results in that it is possible to keep down the distance between the magnet and the magnetic field sensing components while at
the same time both axial and radial tolerances can be absorbed and a physical centre is not needed. The design also does that the first part can absorb tolerances of surrounding components in x/y/z-directions through a calibration procedure and also by the design of the interacting components.

In one embodiment the at least one protrusion of the first element is comprised of at least three protruding legs which run separately in the first guide groove.

By having at least three protruding legs sliding in the guide groove the problem with the first part getting jammed, so called drawer effect, is solved. The contact surfaces are kept at a minimum in order to minimize friction and thereby any noise problems.

In one embodiment the protrusion of the first part is resilient in radial and/or axial direction.

When the legs are resilient the pedal position sensor manage a certain amount of dirt and foreign particles in the grooves without experiencing any significant degeneration of the quality of the signal.

In one embodiment the magnetic element is arranged in the first part and the magnetic field sensing detector is arranged in the second part.

The magnetic element/the magnet is thus fastened in a part that accompanies the rotational motion of the pedal but which is separate from the pedal.

In one embodiment the first part is embedded in a self-lubricating material.

If a self-lubricating material is used, it is not necessary to use lubricating grease or similar lubricant substance in order to reduce the friction between the parts.

In one embodiment the first part is, through a link, coupled with the axis of rotation of the pedal, and the second part is mounted in a bracket which is fastened in the chassis of the vehicle.

The first part might have the centre of rotation in the same centre of rotation as the pedal, i.e. centered in the axis of rotation, or in a separate centre of rotation. The design also makes it easy to fasten the first part in the pedal gear without extra fastening elements by using the already existing hub locking.

In one embodiment the second part is intended to be movably arranged in relation to an adjustment bracket, arranged to partly surround the second part, which is mounted in a bracket which is fastened in a the chassis of the vehicle. Thereby an adjustment of the position of the rotation detection device in relation to the chassis of the vehicle is made possible.

Thereby a sliding between the adjustment bracket and the second part and an adjustment of the position of the complete rotation detection device in relation to the chassis of the vehicle is allowed, which facilitate mounting and calibration of the rotation detection device.

In one embodiment the second part comprises a second guide groove, which allows a sliding between adjusting bracket and the second part.

The guide groove controls the motion in axial direction between adjustment bracket and the second part.

In one embodiment the friction in the first guide groove between the first and the second part is lower than the friction in the second guide groove between the second part and the adjustment bracket.

In one embodiment the first and the second part are lockable in relation to each other with a pin, which is arranged to run in holes provided in the first and the second part.

Since the friction is different between the different guide grooves and the respective part that slides in the groove, the motion can be controlled so that when the first and the second part are locked in relation to each other with the pin, the sliding motion takes place between the bracket and the second part and when the pin is removed the sliding motion takes place between the first and the second part.

The invention also relates to a vehicle pedal characterized in that it comprises a pedal shaft, a pedal part which is rotatable around an axis of rotation which extends through the centre of the pedal shaft and a rotation detection device according to any of the embodiments above intended to detect an angle of rotation of the pedal part.

The invention will now be described with reference to the accompanying drawings showing illustrative embodiments of the invention. In the drawings,

- Fig. 1 shows the rotation detection device according to the invention mounted at a vehicle pedal,
- Fig. 2a, 2b and 2c show a first and a second embodiment of the rotation detection device,
- Fig. 3 shows the first part of the rotation detection device in different views,
- Fig. 4, 5 and 6 show different solutions for the mounting of the rotation detection device in pedal gears of different materials,
- Fig 7a-d show different types of printed circuit cards.

Description of embodiments

Figure 1 shows the rotation detection device 1 according to the invention mounted at a pedal gear 2. The vehicle pedal 2 can for example be a brake, throttle or clutch pedal, which through a link 3 is coupled to a means 4 intended to transform pedal motion to a force transmitting medium, for example hydraulic fluid. The vehicle pedal 2 is fastened in the chassis 5 of the vehicle through a bracket 6 or similar fastening means. Preferably a further bracket is arranged in parallel with the first
bracket, wherein the other end of the pedal shaft is mounted, however this bracket is removed from the Figure in order to illustrate the invention more clearly. The vehicle pedal 2 comprises a pedal shaft 14 and a pedal part 2a which is rotatable around an axis of rotation A1, which extends through the centre of the pedal shaft 14. The chassis 5 and the mounting bracket 6 are here said to be stationary, but of course is this in relation to the other stationary vehicle components and not in relation to the surroundings, if the vehicle itself moves.

[0038] The rotation detection device 1 comprises a first movable part 7 which is directly, or through a link 8, coupled with the pedal shaft 14 and which accompanies the rotational motion of the pedal part 2a, and a stationary second part 9, which is fastened in the chassis 5 through the bracket 6. The first and the second part 7, 9 are arranged radially outside the axis of rotation A1 of the pedal. The first part 7 is coupled to the second part 9 so that the motion of the first part 7 is controlled in radial direction in relation to the second part 9.

[0039] Figure 2a shows a detailed view of a first embodiment of the rotation detection device. In the figure the first part 7 comprises a magnetic element/magnet 10 (see also figure 3) and the second part 9 comprises a magnetic field sensing component 11 or sensor of Hall or Reed type. The sensor 11 detects the magnetic field depending on where the magnetic element is in relation to the magnetic field sensing component. Depending on the different magnetic field sensing components different signals result, corresponding to a certain rotation of the vehicle pedal. The signals can be partly digital (on/off) or linear over the motion. Of course, the magnet 10 can be placed in the second part 9 and then the magnetic field sensing component 11 in the first part 7.

[0040] The second part 9 comprises a printed circuit card 9a, in which the magnetic field sensing component 11 is placed, and a sensor housing 9b. The sensor housing 9b is preferably designed as a disk or as part of a circle which has an extension in a direction along the circumference of the pedal shaft. The device can deliver one or several types of position signals depending on the design of the printed circuit card. The signals can be of either digital or analogical character or a combination if desired. In order to protect the printed circuit card 9a and the sensor 11 a cover 9c is provided on top of the printed circuit card. At least on the outside, but also on the inside of the sensor housing 9b, i.e. on the radially transverse surfaces on the housing in relation to the axis of rotation 14 of the pedal, at least a first guide groove 12a is arranged. The second part 9 comprises also a fastening part 9d which is fastened in the stationary chassis 5, for example through a bracket 6, is suitable when the output signal has a linear character. An electronic zero point calibration is then made by using an adaptive algorithm stored either in a processor on the printed circuit card 9c or one of the processors of the car might be used in those cases where this is suitable. The pedal position sensor 1 learns its zero point by reading its own output signal and storing it when certain criteria are fulfilled, when it is certain that the driver has not the foot on the pedal. Examples of criteria can be that the output signal of the pedal position sensor lies within an acceptable range for what can be expected while at the same time the signal is steady enough, i.e. it is not probable that a man influences it with its foot and if one then reads the smallest value during the sampling time, one might be quite sure of that a true zero value has been accomplished. The pedal position sensor 1 thus calibrates itself electronically. This calibration can be done in the desired way during the lifetime of the car, at the factory, during service and automatically over time. It is also possible to get a switch (on/off) signal calibrated in this way, but still a signal which is linear over the range is necessary.

[0042] Figure 2b shows a detailed view of a second embodiment of the rotation detection device 1. In the figure the first part 7 comprises a magnetic element/magnet 10 and the second part 9 a magnetic field sensing component 11 or sensor. The second part 9 comprises a printed circuit card 9a, in which the magnetic field sensing component 11 is placed and a sensor housing 9b and a cover 9d arranged on top of the printed circuit card. On the outside of the sensor housing 9b, on its radially transverse surfaces in relation to the axis of rotation 14 of the pedal, a first and a second guide groove 12a, 12b are arranged. The first part 7 comprises also a base
In Figure 2b, two different embodiments of the first part 7, 7' are shown, the differences being the design of the fastening part 13. One of the embodiments shows a fastening part 13 with a cast O-ring, and the other with a separate O-ring. Both O-ring constructions attend to that the pedal 2 engages and attaches to the fastening part 13 and makes it possible to take up tolerances.

The difference between this embodiment of Figure 2b and the previous one shown in Figure 2a is that the second part 9 is movably arranged in relation to an adjustment bracket 15, arranged partly surrounding the second part 9 and in that it is the adjustment bracket 15 which is mounted in the bracket 6, which is fastened in the chassis 5. The sensor housing 9b of the second part 9 comprising a second guide groove 12b, in which the adjustment bracket 15 slides. Thereby a sliding is allowed between adjustment bracket 15 and the second part 9 and an adjustment of the position of the complete rotation detection device 1 in relation to the chassis 5 of the vehicle, which facilitates mounting and calibration of the rotation detection device. This embodiment shows also a pin 16 for locking of the first part 7 together with the second part 9. The pin 16 extends through a hole 17 in the sensor housing 9b of the second part 9. The grooves 12a and 12b and the sliding surfaces in the protrusions 7c of the first part and the sliding surface of the adjustment bracket are so designed that the coupled first and second parts get a higher frictional resistance in the groove 12a than the frictional resistance that arises in the second groove 12b, when the adjustment bracket 15 moves in relation to the backside of the second part.

When mounting the rotation detection device in the vehicle the parts that are locket together (pin 16, first part 7, 7' are shown, the differences being the design of the fastening part 13). One of the embodiments show a fastening part 13 with a cast O-ring, and the other with a separate O-ring. Both O-ring constructions attend to that the pedal 2 engages and attaches to the fastening part 13 and makes it possible to take up tolerances.

This embodiment is especially suitable in those cases where the components of the rotation detection device 1 are of switch type (on/off) and the demand of accuracy is so high that one cannot do without calibration. Determination of the reversal point is done by positioning the components on the printed circuit card 9a in relation to the embedded magnet 10.

Accordingly, there are two ways of calibrating the rotation detection device. For old vehicles, where the electrical system is frozen, a device is used according to embodiment one with an adjustment bracket 15. For new vehicles, where the electrical system is not frozen, or in those cases where one gets the opportunity to make changes therein or is allowed to build in intelligence in the rotation detection device, a self-learning algorithm can be used, which during the lifetime of the car adjusts the electronic zero position of the pedal. Here one can choose to leave out adjusting board and pin. The rotation detection device 1 learns by itself when the pedal 2 is unaffected.

Figure 2c shows a further embodiment of the rotation detection device 1. Here the complete device is enclosed in a housing 20. The housing 20 acts as a dust protector, or alternatively as an EMC protection, if it is lined on the inside with foil. It is also possible to dress the sensor housing 9b with foil on the inside or to manufacture the housing in a special plastic in order to increase the resistance to EMC disturbances.

In Figure 3 the first part 7 is shown in different views. The protrusions 7c are here at least three (four are shown in the Figures) protruding legs 7c1, 7c2, 7c3, 7c3, running separately in the first guide groove 12. These protruding legs 7c1, 7c2, 7c3, 7c4 are resilient in radial and/or axial direction and are so designed that they will shovel all particles which these legs cannot spring away from, before themselves and in that way keep the sliding surface free from bigger disturbances in the form of foreign particles. Smaller particles are taken care of by the resilience, which is obtained through the design of one of the pair of legs of the first part 7. Parts which are not shoveled away are managed by the resilience of the legs without that the quality of signal will be significantly deteriorated.

Both the first and the second part 7, 9 can easily be injection-molded in plastic and with an automated assembly a cost can be achieved which corresponds to less than half of the cost for sensors of today. Here it is also advantageous to choose a plastic which protects the circuits from EMC-radiation. EMC-securing of the components of the second part, i.e. cover 9c and sensor housing 9b, will result in a well protected sensor. It also possible to embed the first part 7 by molding it into a self-lubricating material. The magnet 10 is also molded into the first part 7.

During the assembly of the rotation detection device the circuit card 9a is mounted down over guide pins molded in the sensor housing 9b and protruding con-
According to one embodiment the method for the manufacture of a rotation detection device intended for detection of rotation of a vehicle pedal 2 around an axis of rotation A1 is described. The rotation detection means may comprise a movable first part 7, which accompanies the rotation motion of the pedal 2 and comprises a magnetic element 10, and a second stationary part 9 comprising a magnetic field sensing component 11, wherein the first and the second part 7, 9 are intended to be arranged radially outside the axis of rotation A1 of the pedal, wherein the second part 9 comprises a circuit card 9a, a sensor housing 9b and a guide groove 12a, and on the first part 7 is arranged at least one protrusion 7c intended to cooperate with the guide groove 12a, arranged in the second part 9. This method comprises the following steps:

- mounting of the circuit card 9a onto contact pins protruding from the sensor housing 9b;
- joining of the contact pins with the circuit card 9a;
- introducing of the protrusions 7c of the first part 7 into the guide groove 12a of the second part 9.

The method may also comprise any or some of the following steps: feeding and positioning of an adjustment bracket 15; feeding and assembling of the sensor housing 9b in the adjustment bracket 15; application of protecting lacquer on the circuit card 9a; putting on and fastening of cover 9c on the sensor housing 9b. Thereafter the rotation detection device is programmed with its zero points. If adjustment bracket 15 is used the pin 16 is then mounted. The rotation detection device 1 is now mounted. The rotation detection device 1 is now complete and ready to be mounted in the pedal gear with its pedal bracket 6.

Alternatively, the sensor housing 9b is filled up with a heat welding, melting, gluing or similar fastening process. Alternatively in the sensor housing 9b, depending on if adjustment bracket 15 is used or not, in the way that is shown in Figure 5. In the pedal bracket is formed a protrusion 29 and a hole 31 is cut for passing through of the arm of the pedal position sensor. The arm pedal position sensor is guided through the cut hole 31, around which the hole in the arm 26 is slipped. Molded guide pins 27 at the pedal sensor is placed in guide holes 30 in the bracket and thereafter a bolt- and nut-joint or other locking joint is tightened in the same way as for castings, Figure 4. The nut or the collar of the bolt now locks the pedal sensor by the pressure from the bolted joint and the guide pins guarantee that the positioning will be exact enough. Only the active interface in the plate bracket 6 is defined in the drawing.

For pedal brackets made of plate 6 an arm with a hole 26 is molded in the adjustment bracket 15 alternatively in the sensor housing 9b, depending on if adjustment bracket 15 is used or not, in the way that is shown in Figure 4 with molded edges 21 and snap fastener 22, respectively. The fastening part 9d of the adjustment bracket 15 or the sensor housing 9b and the interface of the pedal bracket 6 are formed in the way that is shown in Figure 4 with molded edges 21 and snap fastener 22, respectively. The fastening part 9d of the sensor housing 9b steers against the molded edges 21 and the snap fastener 22 snaps around a bolt or other shaft 25 at the center of the pedal gear. The rotation detection device 1 is locked in position by the guides 21 and by the fact that a head/nut is tightened around the shaft 25 and squeezes it to be fixed. It is also possible to lock the device in position by using any other locking device, such as a pin or similar.

For pedal brackets made of plate 6 an arm with a hole 26 is molded in the adjustment bracket 15 alternatively in the sensor housing 9b, depending on if adjustment bracket 15 is used or not, in the way that is shown in Figure 4 with molded edges 21 and snap fastener 22, respectively. The fastening part 9d of the adjustment bracket 15 or the sensor housing 9b and the interface of the pedal bracket 6 are formed in the way that is shown in Figure 4 with molded edges 21 and snap fastener 22, respectively. The fastening part 9d of the sensor housing 9b steers against the molded edges 21 and the snap fastener 22 snaps around a bolt or other shaft 25 at the center of the pedal gear. The rotation detection device 1 is locked in position by the guides 21 and by the fact that a head/nut is tightened around the shaft 25 and squeezes it to be fixed. It is also possible to lock the device in position by using any other locking device, such as a pin or similar.
gous signal 37 over the stroke alternatively one may here replace and position a switch of either Hall or Reed type.

All of these circuit cards can be activated with a magnet 34 of common strength and size, which considerably increase the competitiveness of the design. All embodiments can use the same components.

Claims

1. A rotation detection device (1) for detection of rotation of a vehicle pedal (2) comprising a pedal shaft (14), the pedal (2) being rotatable around an axis of rotation (A1) extending through a centre of the pedal shaft, the rotation detection device (1) comprising:

- a movable first part (7), which, in use, accompanies the rotational motion of the pedal (2), a stationary second part (9), wherein the first and the second part (7, 9) are to be arranged radially outside of the pedal shaft (14),
- a magnetic field sensing component (11) arranged in the first (7) or in the second part (9) and a magnetic element (10) arranged in that part of the first or the second part (7, 9) that does not comprise the magnetic field sensing component (11), wherein the magnetic field sensing component (11) generates an electric signal originating from magnetic interaction between the first and the second part (7, 9) when the first and the second part are moving in relation to each other, wherein the first part (7) is coupled to the second part (9) so that the motion of the first part is controlled in relation to the second part, characterized in that the first part (7) comprises a base part (7a) and at least one arm (7b) protruding from the base part (7a) and is arranged such that said at least one arm (7b) at least partly surrounds the second part (9).

2. The rotation detection device (1) according to claim 1, wherein at least one protrusion (7c) is arranged at said at least one arm (7b) of the first part, which is intended to cooperate with a first guide groove (12a), arranged in the second part (9).

3. The rotation detection device (1) according to claim 2, wherein said at least one protrusion (7c) extends in a substantially perpendicular direction from said at least one arm (7b) towards the second part (9).

4. The rotation detection device (1) according to claim 2 or 3, wherein said at least one protrusion (7c) of the first part (7) is comprised of at least three protruding legs (7c1, 7c2, 7c3, 7c4) running separately in the first guide groove (12a).

5. The rotation detection device (1) according to any of claims 2 - 4, wherein the protrusion (7c) of the first part is resilient in a radial and/or an axial direction.

6. The rotation detection device (1) according to any of the preceding claims, wherein the magnetic element (10) is arranged in the first part (7) and the magnetic field sensing component (11) is arranged in the second part (9).

7. The rotation detection device (1) according to any of the preceding claims, wherein the first part (7) is embedded in a self-lubricating material.

8. The rotation detection device (1) according to any of the preceding claims, wherein the first part (7), through a link, is linkable to the pedal shaft (14) of the pedal in which the axis of rotation (A1) is arranged and wherein the second part (9) is mounted in a bracket (6) which is mountable to the chassis (5) of the vehicle.

9. The rotation detection device (1) according to any of the preceding claims 1 - 7, wherein the second part (9) is intended to be movably arranged in relation to an adjusting bracket (15), which is arranged partly surrounding the second part (9), which is mounted in a bracket (6) which is mountable in the chassis (5) of the vehicle, enabling an adjustment of the position of the rotation detection device (1) in relation to the chassis (5) of the vehicle.

10. The rotation detection device (1) according to claim 9, wherein the second part (9) comprises a second guide groove (12b), which enables a sliding between the adjustment bracket (15) and the second part (9).

11. The rotation detection device (1) according to claim 10, wherein friction between the first and the second part (7, 9) in the first guide groove (12a) is lower than the friction between the second part and the adjustment bracket (9, 15) in the second guide groove (12b).

12. The rotation detection device (1) according to claim 10, wherein the first and the second part (7, 9) are lockable in relation to each other with a pin (16), which is arranged to run in holes (17) arranged in the first and the second part (7, 9).

13. The rotation detection device (1) according to any of the preceding claims, wherein the second part (9) has a snap fastener (22) for attachment to the pedal shaft of the pedal, so that the pedal and the rotation detection device obtain a common centre of rotation.

14. A vehicle pedal (2), characterized in that it comprises a pedal shaft (14), a pedal part (2a) being rotatable around an axis of rotation (A1) which ex-
tends through a centre of the pedal shaft (14) and a rotation detection device (1) according to any of the preceding claims intended to detect an angle of rotation of the pedal part (2a).

Patentansprüche

1. Drehdetektor (1) zur Detektion der Drehung eines Fahrzeugpedals (2) umfassend eine Pedalwelle (14), wobei das Pedal (2) um eine durch eine Mitte der Pedalwelle verlaufende Drehachse (A1) drehbar ist, wobei der Drehdetektor (1) umfasst:

 ein bewegliches erstes Teil (7), das im Gebrauch die Drehbewegung des Pedals (2) begleitet,
 ein stationäres zweites Teil (9), wobei das erste und das zweite Teil (7, 9) radial außerhalb der Pedalwelle (14) anzuordnen sind,
 eine Magnetfelderfassungskomponente (11), die im ersten (7) oder im zweiten Teil (9) angeordnet ist, und ein Magnetelement (10), das in jenem Teil des ersten oder des zweiten Teils (7, 9) angeordnet ist, das die Magnetfelderfassungskomponente (11) nicht umfasst, wobei die Magnetfelderfassungskomponente (11) ein elektrisches Signal erzeugt, das aus der magnetischen Wechselwirkung zwischen dem ersten und dem zweiten Teil (7, 9) stammt, wenn sich das erste und das zweite Teil relativ zueinander bewegen, wobei das erste Teil (7) mit dem zweiten Teil (9) gekoppelt ist, sodass die Bewegung des ersten Teils relativ zum zweiten Teil gesteuert wird, **dadurch gekennzeichnet,** dass das erste Teil (7) ein Basisteil (7a) und mindestens einen Arm (7b) umfasst, der von dem Basisteil (7a) vorsteht und so angeordnet ist, dass der mindestens eine Arm (7b) das zweite Teil (9) mindestens teilweise umgibt.

2. Drehdetektor (1) nach Anspruch 1, wobei mindestens ein Vorsprung (7c) an dem mindestens einen Arm (7b) des ersten Teils angeordnet ist, der dazu bestimmt ist, mit einer ersten Führungsnut (12a) zusammenzuwirken, die im zweiten Teil (9) angeordnet ist.

3. Drehdetektor (1) nach Anspruch 2, wobei sich der mindestens eine Vorsprung (7c) in einer im Wesentlichen rechtwinkligen Richtung von dem mindestens einen Arm (7b) in Richtung des zweiten Teils (9) erstreckt.

4. Drehdetektor (1) nach Anspruch 2 oder 3, wobei der mindestens eine Vorsprung (7c) des ersten Teils (7) aus mindestens drei vorstehenden Schenkeln (7c1, 7c2, 7c3, 7c4) besteht, die getrennt in der ersten Führungsnut (12a) laufen.

5. Drehdetektor (1) nach einem der Ansprüche 2 - 4, wobei der Vorsprung (7c) des ersten Teils in radialer und/oder axialer Richtung elastisch ist.

6. Drehdetektor (1) nach einem der vorhergehenden Ansprüche, wobei das Magnetelement (10) im ersten Teil (7) und die Magnetfelderfassungskomponente (11) im zweiten Teil (9) angeordnet ist.

7. Drehdetektor (1) nach einem der vorhergehenden Ansprüche, wobei das erste Teil (7) in ein selbstschmierendes Material eingebettet ist.

8. Drehdetektor (1) nach einem der vorhergehenden Ansprüche, wobei das erste Teil (7) über eine Verbindung mit der Pedalwelle (14) des Pedals, in der die Drehachse (A1) angeordnet ist, verbindbar ist und wobei das zweite Teil (9) in einem Haltewinkel (6) montiert ist, der am Fahrgestell (5) des Fahrzeugs montierbar ist.

9. Drehdetektor (1) nach einem der vorhergehenden Ansprüche 1 - 7, wobei das zweite Teil (9) dazu bestimmt ist, beweglich relativ zu einer Einstellhalterung (15) angeordnet zu sein, die das zweite Teil (9) teilweise umgibt, das in einem Haltewinkel (6) montiert ist, der im Fahrgestell (5) des Fahrzeugs montierbar ist, wodurch eine Einstellung der Position des Drehdetektors (1) relativ zum Fahrgestell (5) des Fahrzeugs ermöglicht wird.

10. Drehdetektor (1) nach Anspruch 9, wobei das zweite Teil (9) eine zweite Führungsnut (12b) aufweist, die ein Gleiten zwischen der Einstellhalterung (15) und dem zweiten Teil (9) ermöglicht.

11. Drehdetektor (1) nach Anspruch 10, wobei die Reibung zwischen dem ersten und dem zweiten Teil (7, 9) in der ersten Führungsnut (12a) geringer als die Reibung zwischen dem zweiten Teil und der Einstellhalterung (9, 15) in der zweiten Führungsnut (12b) ist.

12. Drehdetektor (1) nach Anspruch 9, 10 oder 11, wobei das erste und das zweite Teil (7, 9) relativ zueinander mit einem Stift (16) verriegelbar sind, der so angeordnet ist, dass er in im ersten und im zweiten Teil (7, 9) angeordneten Löchern (17) verläuft.

13. Drehdetektor (1) nach einem der vorhergehenden Ansprüche, wobei das zweite Teil (9) einen Schnappverschluss (22) zur Anbringung an der Pedalwelle des Pedals aufweist, sodass das Pedal und der Drehdetektor einen gemeinsamen Drehmittelpunkt erhalten.
14. Dispositif de détection de rotation (1) destiné à détec\nter la rotation d’une pédale de véhicule (2) compren\nant le disque de pédale (14), la pédale (2) et la parti\ne de guidage (12a), disposée dans la seconde partie (9) .

15. Dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes, l’élé\ment magnétique (10) étant disposé dans la première part\ie (7) et le composant de détection de champ magnétique (11) étant disposé dans la seconde partie (9).

16. Dispositif de détection de rotation (1) selon la reven\ndication 2 ou 3, ladite au moins une saillie (7c) de la\npremière partie (7) étant composée d’au moins trois\npattes saillantes (7c1, 7c2, 7c3, 7c4) s’étendant sé\parerément dans la première rainure de guidage (12a).

17. Dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes, la pre\mière partie (7) étant intégrée dans un matériau autolubrifiant.

18. Dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes, la prem\ière partie (7) pouvant être reliée par l’intermédiaire\ne d’une biellette, à l’arbre de pédale (14) de la pé\dale dans lequel est disposé l’axe de rotation (A1) et la se\conde partie (9) étant montée dans un support (6) qui peut être monté sur le châssis (5) du véhicule.

19. Dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes 1 à 7, la seconde partie (9) étant destinée à être disposée de manière mobile par rapport à un support de réglage (15), qui est disposé partiellement autour de la seconde partie (9), qui est montée dans un support (6) qui peut être monté dans le châssis (5) du véhicule, permettant un réglage de la position du dispositif de détection de rotation (1) par rapport au châ\nssis (5) du véhicule.

20. Dispositif de détection de rotation (1) selon la reven\ndication 9, la seconde partie (9) comprenant une se\conde rainure de guidage (12b), qui permet un coulo\rissage entre le support de réglage (15) et la se\conde partie (9).

21. Dispositif de détection de rotation (1) selon la reven\ndication 10, la friction entre la première et la seconde part\ie (7, 9) dans la première rainure de guidage (12a) étant inférieure à la friction entre la seconde part\ie et le support de réglage (9, 15) dans la seconde rainure de guidage (12b).

22. Dispositif de détection de rotation (1) selon la reven\ndication 9, 10 ou 11, la première et la seconde partie (7, 9) pouvant être verrouillées l’une par rapport à
l’autre avec une broche (16), qui est disposée pour passer dans des trous (17) pratiqués dans la première et la seconde partie (7, 9).

13. Dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes, la seconde partie (9) ayant un bouton-pression (22) à des fins de fixation à l’arbre de pédale de la pédale, de sorte que la pédale et le dispositif de détection de rotation obtiennent un centre de rotation commun.

14. Pédale de véhicule (2), caractérisée en ce qu’elle comprend un arbre de pédale (14), une partie de pédale (2a) pouvant tourner autour d’un axe de rotation (A1) qui s’étend à travers un centre de l’arbre de pédale (14) et un dispositif de détection de rotation (1) selon l’une quelconque des revendications précédentes destiné à détecter un angle de rotation de la partie de pédale (2a) .
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20110162481 A1 [0002]
• EP 1801543 A2 [0006]
• US 7816913 B2 [0007]